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Abstract

We introduce a morphological approach to curve evolu-
tion. The differential operators used in the standard PDE
snake models can be approached using morphological op-
erations on a binary level set. By combining the morpho-
logical operators associated to the PDE components we
achieve a new snakes evolution algorithm. This new solu-
tion is based on numerical methods which are very simple,
fast and stable. Moreover; since the level set is just a binary
piecewise constant function, this approach does not require
to estimate a contour distance function. To illustrate the re-
sults obtained we present some numerical experiments on
real images.

1. Introduction

Snakes and their geometrically sound alternative,
geodesic active contours [2], are possibly the most popu-
lar curve evolution algorithms. By iteratively solving a par-
tial differential equation (PDE), the curve or snake deforms
its shape so as to minimize internal and external energies
along its boundary. The internal component keeps the curve
smooth, while the external component attaches the curve to
image structures, such as edges, lines, etc. This scheme has
many desirable properties such as its parameterization-free
nature, intuitive formulation and ability to adapt to shapes
of unknown topology. This behavior makes curve evolution
one of the most widely used algorithms for image segmen-
tation and object tracking.

Our work is related to many previous results whose aim
is to achieve efficient and robust curve evolution algorithms,
e.g. [1, 5,9, 10]. The level set approach has been suc-

The order of authors is strictly alphabetical. This research was funded
by the Cajal Blue Brain Project. Luis Baumela was also funded by the
spanish Ministry of Education under contracts TRA2005-08592-C02-02
and CSD2007-00018. Pablo Marquez-Neila was funded by the Programa
Personal Investigador de Apoyo from the Comunidad de Madrid.

Pedro Henriquez?

Pablo Marquez-Neila'

"Dep. Inteligencia Artificial
Facultad Informatica

Universidad Politécnica de Madrid
http://www.dia.fi.upm.es/ pcr

cessfully used to perform curve evolution. The main steps
of this method are : (i) the contour is included in a level
set computing the contour signed distance function, (ii) the
PDE model is solved in a contour narrow band and (iii) Re-
initialization of the contour and the distance function is re-
quired in order to keep the stability of the algorithm. Gold-
enberg and colleagues use the narrow-band approach with
an unconditionally stable numerical scheme (Additive Op-
erator Splitting) and multi-resolution for a stable active con-
tour evolution [5]. Paragios [9] also uses the Additive Op-
erator Splitting schema with a boundary force, the gradient
vector field, to guide the curve evolution. Shi and Karl [10]
adopt a completely different approach. Instead of solving
the PDE, the evolution of the curve is realized by simple
operations such as switching elements between two linked
lists of pixels representing the contour. Regularization is
achieved by Gaussian filtering.

The main contribution of this paper is a new morpho-
logical approach to the solution of the PDE associated to
snake model evolution. That is, we approach the solution
of the PDE using just inf-sup operators. This is based on
the observation that the differential operators involved in
the PDE snakes evolution model can be approached using
morphological operators and the solution of the PDE can
be approximated as a composition of such morphological
operators.

The main advantage of this solution is that the level set is
much simpler to define (we can take just O outside the con-
tours an 1 inside). Also, the contour evolution algorithm
is much faster that the usual level set method because we
only use the inf-sup operator. We do not need to perform a
finite difference numerical implementation of the differen-
tial operator, which are much more sophisticated and time
consuming than the inf-sup operators. Moreover, no re-
initialization of the level set and contour is needed. So these
nice properties of our approach enables us to devise a very
fast and stable curve evolution algorithm. For a general the-
oretical introduction to the relation between morphological



operator and geometric PDE solutions see [6].

2. Active Contours and level sets

Let C : [0,1] — R? be a parametrized 2D curve and
I : R? — R be an image. The evolution of curve C over
time is due to the effect of a scalar field F which deform
the curve along its inwards normals, i.e., C; = F - N.
In the specific case of the geodesic active contours [2],
F = g(HK + g(I)v — Vg(I) - N, where K is the Eu-
clidean curvature of C, v € R is the balloon force parameter
(see [4]) and g([I) selects which regions of image I attract
the curve. Typically, g(I) could be
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which is low in the edges of the image, or
g(I) = |Go I 2

which attains its minima at the center of the image dark
lines. The Osher-Sethian [8] level set method represents the
curve in an implicit form as the level set of an embedding
function. Let v : RT x R?> — R be an implicit repre-
sentation of C such that C(t) = {(x,y);u(t, (x,y)) = 0}.
It is easy to see that, if the curve evolution has the form
C; = F - N, the evolution of any function u(x,y) which
embeds the curve as one of its level sets is

ou
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See [7] or the Appendix C in [2] for a proof. Knowing that

the curvature I can be computed with the information on

the function v as K = div (%), we get the well-known

curve evolution for the geodesic active contours in a level
set framework:

% = g(I)|Vul| (div (&) + V) + Vg(I)Vu. (4)

The flow given by this expression has three components,
two of them related to the internal energy of the curve and
one of them related to the external energy. The internal en-
ergy components are the smoothing operator, which tends to
smooth the curve at high curvature segments, and the bal-
loon balloon, which inflates or deflates the curve in areas
of little information. The external energy component is re-
sponsible for bringing the curve to the interesting regions of
the image.

Differential equation (4) can be solved with numeri-
cal integration methods such as a finite-difference scheme.
However, these techniques are sensitive to the step size,
converge slowly and may diverge. In the following section
we introduce a morphological approach to curve evolution
which is simpler, faster and more stable.

3. Morphological evolution of geodesic active
contours

Inspired by the active contour PDE (4), we propose a
new morphological evolution method that solves the PDE
but avoids the problems of speed and convergence asso-
ciated to the numerical algorithms. The new evolution
will use a combination of binary morphological operators
whose infinitesimal behavior is equivalent to the flow ex-
pressed by the equation (4). Therefore, the curve is given
as the zero level set of a binary piecewise constant func-
tion u : R? — {0,1}. We take u(x) = 1 for every point
inside the curve, and u(z) = 0 for every point z outside
the curve. The morphological operators will act on u and,
hence, they will implicitly evolve the curve.

3.1. Balloon force operator

The erosion and dilation are two well-known morpho-
logical operators. The dilation of a function is defined
as (Dpu)(x) = supyeppu(x —y), and the erosion is
(Epu)(x) = infyeppu(x — y). In both cases, h is the
radius of the operator, and B is a disk with radius 1.

Let us study the behavior of these operators in terms of
continuous-scale morphology. The function ug : RT x
R? — R defined as ugq(t,x) = Dsuo(x) is the solution
to the following partial differential equation:
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for the initial condition u4(0,x) = wg(x) (see [7] for a
proof). Therefore, Dy, is the infinitesimal generator of the
PDE in eq. (5) and we can verify that
Dpu—u
lim ———— = |Vu. 6
hig)lJr h | U| ©)
With a similar reasoning, we can say that the function u,. :
RT xR? — R defined as u,(t,x) = E;uo(x) is the solution

to the PDE
Oue
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for the initial condition u.(0,x) = wg(x). These results
allow us to solve a level set evolution PDE like those on
equations (5) and (7) using the morphological operators Dy,
and Ejy, respectively.

We will focus on the balloon type operator term of equa-
tion (4):

= —|Vu| (7
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The factor g(I) controls the strength of the balloon force
in different segments of the curve: when g(I) is high, the
corresponding segment is located far from a target region,
and the balloon force must be strong; on the other hand,

:g([)~l/~|vubau|. (8)



when ¢(I) becomes lower, the curve is approaching its ob-
jective, and hence the balloon force becomes unnecessary.
The effect of the g(/) factor in (8) can be discretized with
a single threshold #: when g(I) is greater than 6, the cor-
responding point is updated according to the balloon force,
and left unchanged otherwise. Depending on the value of v,
the remaining factors (v - | Vpaioon|) lead to the dilation and
the erosion PDEs given above. Given the snake evolution at
iteration n, u" — {0, 1}, the balloon force PDE (8)
applied over " can be solved using the following morpho-
logical approach:

(Dgu™)(x;) ifg(I)(x;) >0andv >0
u"(xi) = (Bqu™)(x;) if g(I)(x;) > fand v < 0,
u"(x;) otherwise

)
where Dy and Ej; are the discrete versions of dilation and
erosion.

3.2. Smoothing morphological operator

Let B the set of all line segments of length 2 centered at
the origin of R2. We define the morphological continuous
line operators as

(SThu)(x) = sup et o u(y), (10)
IS = inf 11
(L Shu)(x) nf Joup u(y). (11)

The mean operator
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(Fu)(x) = :

has some interesting properties. The so-called Catté-Dibos-
Koepfler scheme [3] relates the operator F; with the mean
curvature motion in the following manner:

Vu

(Fru)(x) = u(x) + h27|Vu| div <|V ) (x) + O(h*).
(13)
Rearranging terms and setting a small h, we obtain the in-

finitesimal generator of the F}, operator:
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Subsequently, we can solve the mean curvature motion by
means of the F}, operator. Unfortunately, one can easily
see that F}, is no longer a morphological operator in the
sense that it generates new level set values. We can avoid
this problem using operator composition. Given any two
operators T} and T, we have, for a small h, that

T?u + Tu
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T3 0 Thypu =

See Appendix A for the proof.

Therefore, the non-morphological operator F' /7 can be
approximated by the morphological operator SI /7 0 IS .
We will iterate this new operator in order to approach the
solution of the weighted mean curvature PDE:
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ot 9(I) - [Vttsmi| 1V<|Vu5mt|> (16)

As in the previous case, the g(I) factor acts like a weight
which controls the strength of the smoothing operation at
every point, and we will discretize it again by means of a
threshold 6. The morphological evolution of the PDE (16)
for a known function u" is given by

ifg(I)(x) >0
otherwise

" (X)

)
where S1; and 1S, are the discrete versions of the above
morphological continuous line operators. Both /.5; and S1,
have their own version of the set 13, P, which is a collection
of four discretized segments centered at the origin:
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3.3. How does the ST, o IS, operator work?

Here we present an intuitive explanation of the S1;01S5y
smoothing operator. In binary images w, both S1; and 1.5y
perform the same operation, but SI; works only on white
(or active) pixels and 1.5, only on black (or inactive) pix-
els. It is easy to see that SI,; does not affect inactive pixels.
Suppose u(xg) is an inactive pixel, i.e., u(xg) = 0. Then,
infyex,+pu(y) will be 0 for every segment P in P, and
therefore (STu)(xo) = 0. Following a similar reasoning,
we can see that 1.5, does not affect active pixels.

For every active pixel x; in a binary image, the S1; op-
erator looks for small (3 pixels long) straight lines of active
pixels which contain x;. This search is done in the four pos-
sible orientations corresponding to the four segments in P.
If no straight line exists, the pixel is made inactive (see Fig-
ure 1). Sharp edges (Fig. 1c and 1d) are detected as those
pixels which are not part of a straight line and removed.
The active pixels in smooth edges (Fig. 1a and 1b) remain
unchanged.

For inactive pixels, the I.S; operator carries out a similar
procedure (see Figure 2).

The composition S1; o 1.5, first removes the sharp inac-
tive pixels with 1Sy, and then repeats the procedure for the
active ones with S1;. The result is a global smoothing of ,
as can be seen in the Figure 3.
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Figure 1. Some examples of the effect of the SI; operator on individual pixels of binary images. In those cases where a straight line is
found (marked in red), the central pixel remains active ((a) and (b)). When the central pixel does not belong to a straight line of active
pixels, it is made inactive ((c) and (d)). For exemplification purposes, we assume the pixels on the borders are not affected by the operator.
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Figure 2. Examples of the /.S operator.

Note that the examples (d) in the Figures 1 and 2 show
opposite cases. Occasionally, the 1.S; operator may con-
sider an inactive pixel as sharp, and make it active. But
then, S, also considers sharp that pixel and makes it inac-
tive again. The composition SI; o 1.5, leaves these pixels
unchanged:

SIdoISd(E):SId<E>: E (19)

3.4. Solving the complete PDE

As we stated above, the active contour equation (4) is
made up of three different components: a smoothing force,
a balloon force and an attraction force. In previous sections
we have seen how two of these components may be solved
with morphological operators. The third component, i.e.,
the attraction force, has an immediate discrete version as
we will see shortly.

In the PDE, the combination of the three components is
performed through their addition. Our morphological so-
lution will combine them by alternating their discretized
approaches: in each iteration, we will apply the morpho-
logical ballon (8), the morphological smoothing (16) and
the discretized attraction force over the embedding level
set function u. Given the snake evolution at iteration n,
u™ : R? — {0, 1}, we define v ™! from u" using the fol-
lowing steps:

(Dau™)(x;) if [v]g(I)(x;) > 0

andv >0
WS (x) = < (Bau)(xi) if [v|g(T)(xi) > 0,
andv <0
u™(x;) otherwise

1 if Vurtsvg(I)(x;) > 0
uti(x;) = {0 it Vunt3vg(I)(x;) <0,
s if VurtsVg(I)(x;) = 0
uti(x;) = (STao ISqum*3)(x;) if g(I)(x) > 6
O PV 16| otherwise 7

which is the morphological implementation of the active
contour PDE. The new v factor in the first step allows us
to set a different threshold level for the balloon operator
than for the smoothing operator. Thus we can control the
strength of the balloon operator.

4. Results

In order to assess the performance of the morphological
snakes method, we have evolved contours in various im-
ages. Figure 4 shows several frames of the contour evolu-
tion in the soccer image. This image was taken in a toy soc-
cer scenario, and it has some challenging features: isolated
components (three players and a soccer ball) with elongated
elements (player’s arms and legs) and some areas with dif-
ficult access (pixels enclosed by the third player’s arms).
As we can see, the morphological evolution deals correctly
with these problems: it segments all elements separately,
and penetrates well in difficult regions (frame 145 shows
the point at which the snake enters in two of these regions).
Since the soccer image has a low noise level and presents
fine details, we picked a small kernel size (¢ = 0.14). As
it is a large image and the contour was initialized far from
the optimum, it took up to 210 iterations until convergence
with a weak eroding balloon force (v = —0.1).

Figure 5 shows some results with two ultrasound images
of breast nodules. This kind of images are characterized
by a high noise level and a cluttered look. For that reason,
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Figure 3. Example of the S14 o 1.5, operator iterated until convergence.

Frame 120

Frame 0

Frame 145

Frame 210

Figure 4. Morphological active contours on the soccer image. The image showed here is a cropped 543 x 396 version of the original

3008 x 2000 image.

Image Image size v 0 o
Soccer 3008 x 2000 | —0.1 0.05 0.14
Medicall | 256 x 256 0.32 0.1 5.48
Medical2 | 256 x 256 0.32 0.1 5.48

Table 1. Parameters used in experiments: balloon operator
strength v, threshold 6 and convolution kernel size o (for g(I)).

we used a big convolution kernel (o = 5.48), which helps
the snake to avoid, to some extent, the effect of noise. In
these images, the evolution takes around 70 iterations until
convergence.

The choice of the parameter 6 is not trivial. We obtained
good results by setting it to be smaller than the 90% of the
gray values in g(I). This can be fitted using a histogram of
g(I) values. The parameters v and o were set based on the
image I and on the characteristics of its borders in the same
way as in the classical Geodesic Active Contours method.
We processed all images using the edge detector of equa-
tion (1). Its parameter o was fixed to 1000, but we found
that other values do not significantly affect the results. The
specific parameters used in each experiment are listed in Ta-
ble 1.

Finally, we performed quantitative comparisons of run-
ning times between Morphological Snakes and a standard
method for curve evolution based on solving the PDE.
We ran the previous experiments with our Morphological
Snakes C++ implementation and the Geodesic Active Con-
tours C++ code of the Insight segmentation and registration
toolkit [11], which implements a finite-difference method

Image GeoAct. Contours  Morph. Snakes
Soccer 407s 23s
Medicall 8.1s 1.1s
Medical2 8.3s 1.2s

Table 2. Execution times of geodesic active contours and morpho-
logical snakes for each image.

to solve the PDE. Table 2 shows the results of each run.
The improvement in performance achieved by our method
is roughly one order of magnitude.

5. Conclusions

In this paper we have presented the morphological
snakes, a new approach to active contours evolution using a
morphological implementation of the underlying PDE. This
scheme offers notable advantages over the numerical solu-
tions of the PDE. First, the curve evolution is simpler and
faster. Second, the morphological snakes do not suffer from
instability problems. Third, since the embedding function
does not represent a distance, it requires no re-initialization.

The numerical experiments we have conducted are very
promising. We obtain good segmentation results in a variety
of images. The performance is approximately one order of
magnitude faster than the standard finite-difference method.

The algorithm source code can be downloaded from the
Web site http://www.ipol.im.
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Figure 5. Morphological active contours on two ultrasound images (medicall and medical2) of breast nodules.

A. Operator composition

Let 73! and 77 be any two morphological operators, and
let L} and L? be their corresponding infinitesimal opera-
tors. We can write a first order approximation to the opera-
tor composition 77 190 T} /2 88

Q

h
T}%/Q ° Tﬁ/QU Thy2 (U + 2L}L(U))

Q

u+ EL,ll(u) + EL%L (u + hLi)

2 2 2
h h
~out gy(w) + S Lh(u) +
h 2
+ (2> LI} (u). (20)

The last term depends on the squared value of h, and it can
be dismissed for a small h,

L L?
T,f/2oT,i/2u ~ u+hL;(u) w4+ hLj(u)
2 2
1
~ §(T§u+T;}u). 1)

Therefore, this approximation becomes accurate for small
values of h, and we can replace 3 (77w + T u) by the com-
position T,f/z o ;1/2“'
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