Lecture slides for Automated Planning: Theory and Practice

Plan-Space Planning

Motivation

- Problem with state-space search
 - ◆ In some cases we may try many different orderings of the same actions before realizing there is no solution

• Least-commitment strategy: don't commit to orderings, instantiations, etc., until necessary

Outline

- Basic idea
- Open goals
- Threats
- The PSP algorithm
- Long example
- Comments

Plan-Space Planning - Basic Idea

foo(x)

Precond: ...

Effects: pq(x)

- Backward search from the goal
- Each node of the search space is a partial plan
 - » A set of partially-instantiated actions
 - » A set of constraints
 - ◆ Make more and more refinements, until we have a solution
- Types of constraints:
 - precedence constraint: a must precede b
 - binding constraints:
 - » inequality constraints, e.g., $v_1 \neq v_2$ or $v \neq c$
 - » equality constraints (e.g., $v_1 = v_2$ or v = c) or substitutions
 - causal link:
 - » use action a to establish the precondition p needed by action b
- How to tell we have a solution: no more *flaws* in the plan
 - Will discuss flaws and how to resolve them.

An Example of Partial Plan

Flaws: 1. Open Goals

- Open goal:
 - ◆ An action a has a precondition p that we haven't decided how to establish
- Resolving the flaw:
 - ◆ Find an action b
 - (either already in the plan, or insert it)
 - that can be used to establish p
 - can precede a and produce p
 - ◆ Instantiate variables
 - ◆ Create a causal link

Flaws: 2. Threats

- Threat: a deleted-condition interaction
 - \diamond Action a establishes a precondition (e.g., pq(x)) of action b
 - \diamond Another action c is capable of deleting p
- Resolving the flaw:
 - \diamond impose a constraint to prevent c from deleting p
- Three possibilities:
 - lacktriangle Make b precede c
 - ◆ Make *c* precede *a*
 - Constrain variable(s)to prevent c fromdeleting p

The PSP Procedure

```
\begin{split} & FSP(\pi) \\ & flaws \leftarrow \mathsf{OpenGoals}(\pi) \cup \mathsf{Threats}(\pi) \\ & \text{if } flaws = \emptyset \mathsf{ then } \mathsf{return}(\pi) \\ & \mathsf{select } \mathsf{any } \mathsf{flaw} \ \phi \in flaws \\ & resolvers \leftarrow \mathsf{Resolve}(\phi, \pi) \\ & \mathsf{if } resolvers = \emptyset \mathsf{ then } \mathsf{return}(\mathsf{failure}) \\ & \mathsf{nondeterministically } \mathsf{choose } \mathsf{a} \mathsf{ resolver} \ \rho \in resolvers \\ & \pi' \leftarrow \mathsf{Refine}(\rho, \pi) \\ & \mathsf{return}(\mathsf{PSP}(\pi')) \\ & \mathsf{end} \end{split}
```

PSP is both sound and complete

Example

- Similar (but not identical) to an example in Russell and Norvig's *Artificial Intelligence: A Modern Approach* (1st edition)
- Operators:
 - Start

Precond: none

Effects: At(Home), sells(HWS,Drill), Sells(SM,Milk),

Sells(SM,Banana)

Finish

Precond: Have(Drill), Have(Milk), Have(Banana), At(Home)

◆ Go(*I*,*m*)

Precond: At(1)

Effects: At(m), $\neg At(l)$

◆ Buy(p,s)

Precond: At(s), Sells(s,p)

Effects: Have(p)

Initial plan

The only possible ways to establish the Have preconditions

The only possible ways to establish the Sells preconditions

• The only ways to establish At(HWS) and At(SM)

- To resolve the threat to $At(s_1)$, make Buy(Drill) precede Go(SM)
 - ◆ This resolves all three threats

• Establish $At(l_1)$ with l_1 =Home

• Establish $At(l_2)$ with $l_2 = HWS$

- Establish At(Home) for Finish
 - ◆ This creates a bunch of threats

- Constrain $Go(l_3, Home)$ to remove threats to At(SM)
 - ◆ This also removes the other threats

Final Plan

• Establish At(l_3) with l_3 =SM

Comments

- PSP doesn't commit to orderings and instantiations until necessary
 - ◆ Avoids generating search trees like this one:
- Problem: how to prune infinitely long paths?
 - ◆ Loop detection is based on recognizing states we've seen before
 - ◆ In a partially ordered plan, we don't know the states
- Can we prune if we see the same *action* more than once?

$$\dots$$
 go(b,a) — go(a,b) – go(b,a) — at(a)

No. Sometimes we might need the same action several times in different states of the world (see next slide)

Example

• 3-digit binary counter starts at 000, want to get to 110

$$s_0 = \{d3=0, d2=0, d1=0\}$$

 $g = \{d3=1, d2=1, d1=0\}$

Operators to increment the counter by 1:

incr0

Precond: $d_1=0$

Effects: d_1 –1

incr01

Precond: $d_2 = 0$, $d_1 = 1$

Effects: $d_2=1$, $d_1=0$

incr011

Precond: $d_3=0$, $d_2=1$, $d_1=1$

Effects: $d_3=1$, $d_2=0$, $d_1=0$

A Weak Pruning Technique

- Can prune all paths of length > n, where $n |\{\text{all possible states}\}|$
 - ◆ This doesn't help very much
- I'm not sure whether there's a good pruning technique for planspace planning