Models for Inexact Reasoning

Introduction to Uncertainty, Imprecision and Approximate Reasoning

Miguel García Remesal
Department of Artificial Intelligence
mgremesal@fi.upm.es
Uncertainty and Imprecision

• The ideal model of reasoning (human or computer-based) is the *exact reasoning*

• However, in the real world, reasonings are made with information that is either:
 – Uncertain
 – Imprecise
Uncertainty

• Uncertainty Principle (Heisenberg, 1927)
 – In quantum physics, the outcome of an ideal measurement of a system is not deterministic:
 • It is not possible to exactly determine the position and speed of a particle
 – It is characterized by a probability distribution
 • The larger the associated standard deviation is, the more "uncertain" we might say that that characteristic is for the system.
Uncertainty

• Uncertain knowledge:
 – Expressed with precise predicates
 – It is not possible to extrapolate a truth value from the statement
 – Examples:
 • I believe that John weights 80 Kg
 • It is possible that I will be visiting you at 8 pm
 • It is probable that this car can reach 200 Km/h
Imprecision

• Imprecise Knowledge:
 – Expressed with imprecise predicates
 – The variables are assigned imprecise values
 – Examples:
 • Charles is tall
 • John is between 30 and 35 years old
 – Note that “tall” and “between 30 and 35 years old” are imprecise subsets
Uncertainty vs Imprecision

• Knowledge can be exact
 – John is 1.90 m tall
• Knowledge can be imprecise but not uncertain
 – John is tall
• Knowledge can be uncertain but not imprecise
 – I believe that John is 1.90 m tall
• Knowledge can be uncertain and imprecise
 – I believe that John is tall
Sources of Uncertainty and Imprecision

- Information
 - Incomplete
 - Lack of analysis in medicine
 - Lack of field variables in control systems, etc.
 - Unreliable
 - Unrealiable measurements and analysis
 - Imprecise tools and instruments
- Noise and Distortion
 - Artificial Vision, Speech Recognition Systems, etc.
Sources of Uncertainty and Imprecision

• Knowledge
 – Uncertain/Imprecise
 • “If she has a headache \textit{probably} she has the flu”
 • “The patient has high temperature”
 – Contradictory
 • \textbf{Physician 1}: “If she has a headache \textit{probably} she has the flu”
 • \textbf{Physician 2}: “It is also \textit{possible} that she has not the flu”

• The world itself: it is imprecise and non-deterministic
Sources of Uncertainty and Imprecision

• Representation
 – Wrong choice
 • The formalism used to represent the available knowledge is not adequate
 – Lack of Expressive Power
 • The formalism does not provide enough expressive power
 – It is not possible to fully represent the background knowledge (as provided by experts)
Examples

• Incomplete Information
 – In many cases the clinical record of a given patient is not available
 – The patient cannot remember all the experimented symptoms

• Erroneous Information
 – Incorrectly described symptoms
 – The patient deliberately lies to the physician about her symptoms
Examples

• Imprecise Information
 – Non-quantifiable parameters:
 • pain
 • fatigue, etc.

• Non-deterministic world (e.g. medicine)
 – General laws cannot be applied in some situations
 – Each patient is different
 • Same causes may produce different effects in different patients with no apparent explanation
Examples

• Incomplete Models
 – Some medical phenomena arise due to unknown reasons
 – It is normally difficult to reach a consensus among different medical experts
 – If this information was available it would be difficult to include it into an expert system due to practical issues
Examples

• Examples of domains involving uncertainty and imprecision
 – Medical diagnosis and prognosis (expected outcome of a disease)
 – Financial prediction
 – Prospection (mines, petrol)
 – Image interpretation and artificial vision
 – Speech recognition
 – Monitoring/Control of complex industrial processes
Handling Uncertainty and Imprecision

• To handle uncertainty and imprecision:
 – It is necessary to take them into consideration in an explicit way at two different stages:
 • Representation
 • Inference
 – There are many different techniques that can be classified into two different groups:
 • Symbolic techniques
 • Numerical techniques
Handling Uncertainty and Imprecision

• Symbolic Approaches
 – Based in non-monotonous reasoning:
 • If there is not enough available information, the system makes assumptions than can be corrected later when new information is received
 – Default reasoning Systems (Reiter)
 – Truth Maintenance Systems (Doyle & DeKleer)
 • TMS and Assumption-based TMS
 – Theory of Endorsements (Cohen & Grinberg)
Handling Uncertainty and Imprecision

- Symbolic Approaches: Drawbacks
 - Cualitative nature \(\rightarrow\) it is difficult to take into account the different uncertainty degrees of the hypothesis
 - Present serious combinatorial explosion problems
 - Not suitable for practical applications
Handling Uncertainty and Imprecision

• Numerical Approaches
 – Theoretical Methods
 • Probabilistic Models
 – Probabilistic Logics (Nilsson)
 – Entropy Maximization
 • Dempster-Shafer Theory
 • Fuzzy Logic Theory (Zadeh)
 – Heuristic Methods
 • Certainty Factors (MYCIN, Prospector)
 • Bayesian Inference
Approximate Reasoning

• Definition:

“Reasoning involving imprecise and uncertain knowledge and made using numerical methods”