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Abstract

The paper presents three contributions to autonomous
navigation of mobile robots: (1) a purely reactive method
based on the potential field theory enhanced with a novel
procedure to avoid local minima; (2) a topological map
building method based on the sensory gradient concept
that combined with the reactive module constitutes a
hybrid navigation system and (3) another navigation
system that uses the so called robot’s behaviors to
automatically build a complete navigation model of the
environment. All these schemes have been implemented on
a Nomad-200 platform and fully tested in indoors
environments.

1. Introduction. A Taxonomy for Navigation
Methods

Most of the navigation methods for mobile robots are
based on the use of models of the environment. Obviously
the specific characteristics of the navigation world —
i.e. indoors or outdoors, static or dynamic, structured or
unstructured, etc.— determines the type and the creation
process of the environment models. The exception to the
standard model-based navigation systems are the so-called
reactive systems which do not employ maps of the
environment.

The well-known, almost universally accepted PPA
paradigm for the design of autonomous robots considers
them to be formed by three subsystems: (1) Planning, (2)
Perception and (3) Action. The model-based navigation
methods wholly integrate the three subsystems, whereas
the reactive navigation systems only include the Perception
and Action subsystems as they do not possess reasoning
and planning abilities and are restricted to the interaction
between Perception —usually the inputs of the system— and
Action —normally the outputs of the system.

Despite of their lack of planning and reasoning
faculties the reactive navigation schemes have interesting
features like their ability to adapt to very dynamic,
complex environments that are prohibitive for model-based
methods. For this reason is very advisable to integrate in
the same mobile robot both kind of schemes.
Summarizing, for the taxonomic classification of the
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navigation systems a first feature to be considered is
whether or not the navigation is model-based; i.e. formal
and reactive navigation respectively. Hybrid navigation
integrates both methods in the sense that each navigation
scheme acts autonomously albeit in coordination with the
other one.

Figure 1 shows the taxonomy of navigation schemes
for mobile robots. Each branch of the tree structure is
generated by different altenatives in the corresponding
feature.

There is an additional distinction in the formal or
model-based navigation methods depending on whether
the environment models are a priori fixed or variable
through a learning process after exploratory missions
undertaken by the robot in order to build a map of the
environment. Therefore a second taxonomic feature refers
to the dichotomy between rigid and adaptive modelling of
the environment.
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Figure 1. Tree structure for the taxonomic classification of
mobile robots navigation methods. Numbers from 1 to 3
indicate the feature. Branches are formed by different
possibilities in features. Nodes are specific type of
navigation schemes.

Each type of formal navigation schemes —i.e. rigid and
adaptive— can be further classified into topological or
metric. In metric models the precise, numerical position
and orientation of the robot is needed for navigation
purposes whereas in topological models the navigation
information is qualitative rather than quantitative.
Therefore the distintion between metric and topological
models is the third and last taxonomic feature.



Keeeping in mind the above classification of
autonomous navigation methods for mobile robots this
paper presents the following contributions.

(1) A pure reactive navigation algorithm based on the
well-known potential field theory [4] with a novel
mechanism to avoid the frequent deadlocks produced
by local minima.

(2) A first method for the automatic creation of
topological maps using a novel concept: the sensory
gradient.

(3) A second method for the automatic generation of
topological maps that do not employ sensory
information from the environment.

According to the taxonomic classification previously
proposed , contribution (1) belongs. to the reactive
navigation category and contributions (2) and (3) belong to
the formal, adaptive, topological navigation category.

In the Nomad-200 mobile platform used to test our
navigation methods we have implemented two independent
navigation systems. One of them is a hybrid scheme that
combines contributions (1) and (2). The other system is
based exclusively on contribution (3). In the sequel both
navigation systems are described in separate paragraphs.

2. A Hybrid Navigation System

Hybrid systems enlarge the standard model-based
methods with reactive abilities that have proved to be
excellent for very low-level navigation tasks in complex,
unknown and variable environments. On the other side, the
disadvantages of pure reactive navigation originated from
its lack of planning and reasoning capacities are overcome
in hybrid systems by incorporating model-based schemes.
Therefore hybrid systems combine the low-level
navigation ability of reactive systems with the high-level
navigation ability of topological model-based schemes.

Our hybrid system is composed of two subsystems: (1)
a reactive navigation module and (2) a topological model
builder that detects what we call relevant sensory places
(RSPs) as landmarks of the environment map. These RSPs
form a quite simple network that allows a straightforward
computation of minimum cost routes —i.e. the high-level
navigation tasks- that will be used by the reactive module
for the low-level navigation tasks.

The reactive navigation module is based on the
artificial potential field theory enhanced with a novel
mechanism to avoid the frequent appearence of local
minima that tend to block the robot actions. The model-
based module employs a novel concept in reactive
navigation —i.e. the sensory gradient- to detect the RSPs or
landmarks. These navigation landmarks are linked by
means of privileged navigation directions obtained from
the sensory information processing on board the robot.
Finally a planning module is in charge of the routes
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computation and the coordination with the reactive
scheme.

2.1. Artificial potential fields and fictitious charges

The potential field theory [4] considers the robot as a
particle within a potential field in which the local
variations of the potential function represent the structure
of the environment. The obstacles are modelled as
repulsive forces charges and the final goal as an attractive
charge. The robot movements are iteratively computed,
obtaining at each step the force generated by the field and
using its direction to generate the robot's trajectory. The
purpose is obviously to guide the robot towards the goal
without colliding with the obstacles. One of the serious
drawbacks of the potential field theory is its high
sensitivity to local minima that are unfortunately quite
frequent. In order to escape from local minima we have
introduced a novel approach which is based on the use of
what we call fictitious repulsive forces [6] that compel the
robot to move away from any local minimum once it has
been detected.

A local minimum can be detected taking into account
the result of all the forces acting upon the robot. When the
total force is very small the induced movement will be near
zero and therefore the robot will have almost certainly
fallen into a local minimum. The critical decision is to
detect a possible local minimum when the total force
acting on the robot is lower than certain threshold. In such
a situation the proposed solution is to place a unity
repulsive force which urges the robot to escape from the
local minimum in the coordinates given by the expression:
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where P, is the current robot position; S is the repulsive
force associated with the environment physical structure
and [ isa unity vector perpendicular to the vectorial force
G pointing at the final goal. ¥is a real number that
determines the distance at the point where the fictitious
charge is placed: in our case after empirical testing, twice
the Nomad-200 radius; i.e. about 18 inches.

Figure 2. Example of local minimum in the potential field.

It must be remarked that there exist in the plane two
vectors perpendicular to g and with opposite directions:
left and right, that generate two different robot's
movements. To select one of the two possible vectors we



use the most natural trajectory; i.e. the one that differs in
angle the least from the current robot’s direction.

If there are applied several fictitious charges the total
force due to them has the following expression:
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where C—', is the distance between the robot and the
fictitious charge i and ¢, is a unity vector giving the
direction of charge i. Two parameters, k and m determine
the way the charge decays with distance. Ideally these
parameters should be proportional to the local minimum's
magnitude, albeit this magnitude is unknown at advance.
After experimental adjustments we are using values as
k=8and m=1.
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Figure 3. Five fictitious charges have been generated to escape
from the local minimum. Notice the modified potential field
profile as compared with figure 2 due to the introduction of the
fictitious charges.

The introduction of the fictitious charges provokes an
artificial elevation of the potential field surface allowing
the robot to avoid the local minima without any external
change in its navigation strategy as it is the case in
standard methods for local minima avoidance. In figure 3
can be observed the effect of the fictitious charges created
around the concave region of the object, responsible of the
local minimum.

Latombe mentions a hypothetical potential function —
the navigation function- that if obtained would allow the
robot’s navigation towards the final goal by just applying a
gradient-based descent procedure, [5]. Although this
function do not exist in general or it is very hard to obtain
our artificial fictitious charges method can be seen as a
good approximation to such navigation function.

2.2. Landmarks detection using the sensory
gradient and creation of topological maps

A purely reactive navigation scheme like the one just
discussed is unable to exploit the knwoledge about the
environment -be it a priori given or leamed from
exploratory missions of the mobile robot- and therefore it
must be complemented with a model-based module. In
previous work [7] we have proposed a topological model-
based navigation method that employs what we call
sensory gradient to detect landmarks of the environment.
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We define the sensory gradient as the vector derivative of a
trajectory in the sensory space. This gradient can be
estimated as the difference between the vectors
representing the sensory readings in two successive
instants divided by the elapsed time:

S(t+ A -5(0)
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By applying the sensory gradient concept we can detect
and identify landmarks and build upon them a graph-based
model of the navigation world. Furthermore navigation
plans or missions can be obtained by means of, among
other techniques, the plan-as-communications method [1].
Figure 4(a) displays a network of landmarks or RSPs
obtained using the sensory gradient idea. In figure 4(b) are
shown the corresponding navigation privileged directions
computed by means of the plan-as-communication
concept. For details we refer to [7].
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Figure 4. Part (a) represents the topological map obtained with
the sensory gradient. Part (b) displays the navigation
recommendations for each landmark.



3. A Behavior-based Navigation System

We have also implemented another navigation system
based on a cyclical-execution architecture [2] which is able
to simultaneously build topological models of the
environment —i.e. the high-level navigation tasks— and
execute low-level navigation tasks. In this system the
processes associated with what we call the navigation
behaviors of the robot are executed in a cyclical way so
that one or more behaviors are activated depending on the
environment state. A sequential activation of individual
behaviors produces what we call navigation tasks.

We define three different groups of navigation
behaviors. The first group or basic behaviors group allows
the robot to perform basic navigation operations like “go
forward” and “obstacle avoidance”. To this end three
behavior patterns are used: (a) advance, that makes the
robot to move in straight line and which is the basic
behavior needed by the robot in order to come back after
performing a concrete navigation manoever; (b) lateral
avoidance, that corrects the robot trajectory when a side
collision is foreseen and (c) frontal avoidance, that
produces a turn whenever an obstacle is detected in front
of the robot. This three simple pattern behaviors make
possible the implementation of collision-free trajectories.

The second group of behaviors or navigation strategies
group is formed by the behaviors that makes the robot to
properly activate the basic behaviors depending on the
environment specific structure. In particular, we define
four different navigation strategies: (a) wall and obstacle
following, that generates a trajectory along the wall or the
obstacle contour; (b) detour, that uses the obstacle as a
reference for trajectory modifications and permits high-
level commands like “take the first cross at right”; (c)
turn, that causes a change in the movement direction of up
to 180 degrees and (d) free-movement or wandering in
which the robot moves along without colliding with any
obstacle. In figure 5 two different trajectories obtained
with (a) the obstacle following strategy and (b) the detour
strategy are displayed.
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Figure 5. Trajectories obtained with (a) obstacle following
strategy and (b) detour strategy.

The third and last group of behaviors or operating
behaviors group includes those behaviors needed for high-
level navigation tasks. Among them we point out those in
charge of selecting the appropiate robot task- for instance,
activation of an exploration mission to build environment
maps or activation of an execution mission to reach a
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specific goal- and those in charge of monitoring the robot’s
internal states.

All the behaviors follow a cyclical-execution
architecture based on the PPA paradigm —i.e. Planning,
Perception and Action cycles— and organized in two levels:
supervision and performance. In the supervision level all
possible events for the activation of any behavior are under
continuous control and surveillance. The performance level
is responsible of the decision making about the activation
and coordination of the behaviors. During the Perception
cycle the system inputs can stem from either the physical
sensors or from internal events generated by the navigation
system itself. Similarly the Action cycle can induce either
actuations over physical elements of the robot —for
instance, a modification in the advance movement- or over
the internal states of the robot navigation system itself —for
instance, an updating of the environment model—.

3.1. Reference Places Detection and Model
Building.

For the robot’s internal representation of the
environment we have chosen a topological model based on
Fuzzy Petri Nets (FPN) that allows to simulteneously
identify the places of the FPN with the reference places or
landmarks and the transitions of the FPN with the
navigation strategies linking the landmarks.

The model building is automatically performed by the
robot during the exploratory missions in which the robot
detects the different landmarks and tests different
navigation strategies for each landmark. Whenever one of
the trials leads to a new landmark the model of the
environment is updated. In figure 6 an instant of the robot
navigation in an office room and the corresponding
topological model obtained by the robot are shown. The
circles in the map are the detected landmarks and the
arrows represent the privileged direction for the navigation
strategy to reach the nearest landmark.

Most of the autonomous navigation methods based on
topological models use directly the sensory information as
the main source for the detection and recognition of the
reference places like the system described in the previous
paragraph that uses the sensory gradient for that purpose.
Our second navigation system instead of using sensory
information exploits the information supplied by the
navigation system itself. The changes in the behaviors
-some of them previously defined- of the navigation
system generated by the structure and physical
characteristics of the environment allow the detection of
the reference places or landmarks. Figure 7 shows three
examples of landmark creation. In all of them the robot
navigation system abandons its current navigation behavior
in order to avoid collisions with the obstacles —i.e. the wall
in front of it—. These situations are recognized as reference
places because the robot must abruptly change its
trajectory and therefore they can be used for the



environment modelling and for future planning of

navigation missions.
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Figure 6. An example of environment model building.

([ Q

Q) Q)

(@) ®) ©
Figure 7. Instances of typical landmarks detection.

3.2. Route Planning and Execution.

Once the environment model has been built the mobile
robot can perform any type of navigation mission.
Basically two phases in route planning and execution can
be distinguished: (1) model search and (2) model tracking.
During the model search phase the robot detects and
identifies some of the already created landmarks so that its
position is updated. During the model tracking phase the
robot must test the strategies suggested by the navigation
model until it reaches a new landmark.
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Figure 8a. Example of navigation mission based on the
environment models previously built by the robot.
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Figure 8b. Another example of navigation mission based on the
environment models previously built by the robot.

For route planning a minimum cost algorithm of the
FPN’s propagation values has been implemented [3].
Figure 8 shows two examples of route planning. For each
case the arrows provide the turn to be applied and the
corresponding navigation strategy to follow.

4. Conclusions

We have proposed a taxonomic classification of the
numerous existing autonomous navigation methods in
which we consider three taxonomic features: model-based
versus reactive schemes, fix versus variable modelling and
topological versus metric maps. Afterwards the paper
expounds and discusses three contributions to the
autonomous navigation topic: (1) a purely reactive method
based on the potential field theory enhanced with a novel
procedure to avoid local minima, (2) an autonomous
topological map building method based on the sensory
gradient concept that combined with the reactive method
constitutes a hybrid navigation system and (3) another
navigation system that uses different robot’s behaviors to
automatically build topological maps of the environment
and that based on Fuzzy Petri Nets is able to plan and



execute navigation missions. All these methods have been
implemented on a Nomad-200 platform and thoroughly
tested in office-like environments.
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