<table>
<thead>
<tr>
<th>Course 11</th>
<th>SVMs and Regularized Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program</td>
<td></td>
</tr>
</tbody>
</table>
| 1. **Introduction:** | - Modelling, Optimization and Regularization.
| | - Classical Unconstrained Optimization.
| | - Examples in Constrained Optimization.
| | - Linear classifiers, margins and generalization.
| | - Linear Support Vector Machines; primal problem.
| | - Lagrangian formulation and dual problem.
| | - KKT conditions and optimal solution.
| | - Linear classifiers revisited: Cover's theorem.
| 2. **SVM models:** | - Kernelization and non-linear SVMs:
| | - Non-linear classification in feature spaces.
| | - Common kernel choices.
| | - Parameter tuning.
| | - Support Vector Regression:
| | - Regression problems.
| | - Epsilon-insensitive loss.
| | - Primal and dual formulations, kernelization.
| | - One-class Support Vector Machine:
| | - Density estimation problems.
| | - Primal and dual formulations, kernelization.
| | - Kernels for non-vector data.
| | - Other SVM-related models.
| 3. **SVM learning algorithms:** | - Brief introduction to convex optimization.
| | - Non-linear SVM learning algorithms:
| | - Chunking and decomposition methods. SVMlight.
| | - Sequential Minimal Optimization. LIBSVM.
| | - Linear SVM learning algorithms:
| | - Primal solver: Pegasos.
| | - Dual solver: LIBLINEAR.
| | - Practical work with SVMs.
| 4. **Convex non differentiable optimization:** | - Convex optimization problems.
| | - Subgradients and subdifferential calculus.
| | - Proximal optimization.
| | - Proximal methods: Forward-backward Splitting, Douglas-Rachford, Dykstra, etc.
| | - The ISTA and FISTA algorithms.
| | - Application to regularized learning: lasso, elastic nets, group variants, fused lasso.
| | - Application to image processing.
| | - Application to projection problems.
<p>| | - Practical work with proximal methods. |</p>
<table>
<thead>
<tr>
<th>Bibliography</th>
<th></th>
</tr>
</thead>
</table>