<table>
<thead>
<tr>
<th>Program</th>
<th>Support Vector Machines and Regularized Learning</th>
</tr>
</thead>
</table>
| **1. Introduction:** | • Modelling, optimization and regularization.
• Classical unconstrained optimization.
• Examples in constrained optimization.
• Linear classifiers, margins and generalization.
• Linear Support Vector Machines: primal problem.
• Lagrangian formulation and dual problem.
• KKT conditions and optimal solution.
• Linear classifiers revisited: Cover's theorem. |
| **2. SVM models:** | • Kernelization and non-linear SVMs:
 ◦ Non-linear classification in feature spaces.
 ◦ Mercer's Theorem. Kernel trick.
 ◦ Common kernel choices.
 ◦ Parameter tuning.
• Support Vector Regression:
 ◦ Regression problems.
 ◦ epsilon-insensitive loss.
 ◦ Primal and dual formulations, kernelization.
• One-class Support Vector Machine:
 ◦ Density estimation problems.
 ◦ Primal and dual formulations, kernelization.
 ◦ Kernels for non-vector data.
• Other SVM-related models. |
| **3. SVM learning algorithms:** | • Brief introduction to convex optimization.
• Non-linear SVM learning algorithms:
 ◦ Chunking and decomposition methods. SVMlight.
 ◦ Sequential Minimal Optimization. LIBSVM.
• Linear SVM learning algorithms:
 ◦ Primal solver: Pegasos.
 ◦ Dual solver: LIBLINEAR. |
| **4. Regularized learning:** | • Regularization and usual regularization functions.
• Regularized linear models:
 ◦ Lasso.
 ◦ Elastic-Net.
 ◦ Fused Lasso, group variants.
• Other regularized models. |
| **5. Convex optimization for regularized learning:** | • Proximal optimization and proximal methods.
• The ISTA and FISTA algorithms.
• Application to regularized learning.
• Application to denoising and projection problems. |
| **6. Practical sessions:** | • Python with scikit-learn, Jupyter notebooks. |
Bibliography