<table>
<thead>
<tr>
<th>Course 10</th>
<th>Unsupervised Pattern Recognition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program</td>
<td>0. Introduction to clustering</td>
</tr>
<tr>
<td></td>
<td>1. Data Exploration and preparation</td>
</tr>
<tr>
<td></td>
<td>1.1 Types of features</td>
</tr>
<tr>
<td></td>
<td>1.2 Feature extraction</td>
</tr>
<tr>
<td></td>
<td>1.3 Graphical examination</td>
</tr>
<tr>
<td></td>
<td>1.4 Missing Data and outlayer removal</td>
</tr>
<tr>
<td></td>
<td>1.5 Principal component analysis</td>
</tr>
<tr>
<td></td>
<td>1.6 Kernel functions</td>
</tr>
<tr>
<td></td>
<td>1.7 Data reduction</td>
</tr>
<tr>
<td></td>
<td>1.8 Distance measures</td>
</tr>
<tr>
<td></td>
<td>2. Prototype-based clustering</td>
</tr>
<tr>
<td></td>
<td>2.1. K-Means</td>
</tr>
<tr>
<td></td>
<td>2.2. ISODATA</td>
</tr>
<tr>
<td></td>
<td>2.3. Fuzzy K-means</td>
</tr>
<tr>
<td></td>
<td>2.4. Partitioning Around Medoids (PAM)</td>
</tr>
<tr>
<td></td>
<td>2.5. Mixture models (EM algorithm)</td>
</tr>
<tr>
<td></td>
<td>2.6. Self-Organizing Maps (SOM)</td>
</tr>
<tr>
<td></td>
<td>2.7. Other prototype-based algorithms</td>
</tr>
<tr>
<td></td>
<td>3. Density-based clustering</td>
</tr>
<tr>
<td></td>
<td>3.1. Density Based Spatial Clustering</td>
</tr>
<tr>
<td></td>
<td>3.2. Grid Clustering</td>
</tr>
<tr>
<td></td>
<td>3.3. DENCLUE (DENsity CLUstEring)</td>
</tr>
<tr>
<td></td>
<td>3.4. Other density-based clustering</td>
</tr>
<tr>
<td></td>
<td>5. Graph-based clustering</td>
</tr>
<tr>
<td></td>
<td>5.1. Hierarchical clustering: Introduction</td>
</tr>
<tr>
<td></td>
<td>5.2. Hierarchical clustering Locally optimal algorithm</td>
</tr>
<tr>
<td></td>
<td>5.3. Hierarchical clustering Linking comparison</td>
</tr>
<tr>
<td></td>
<td>5.4. Chameleon</td>
</tr>
<tr>
<td></td>
<td>5.5. Hybrid Graph-Density based clustering: SNN-DBSCAN</td>
</tr>
<tr>
<td></td>
<td>5.6. Other graph-based clustering</td>
</tr>
<tr>
<td></td>
<td>6. Cluster evaluation</td>
</tr>
<tr>
<td></td>
<td>6.1. Clustering tendency</td>
</tr>
<tr>
<td></td>
<td>6.2. Unsupervised cluster evaluation</td>
</tr>
<tr>
<td></td>
<td>6.3. Supervised cluster evaluation</td>
</tr>
<tr>
<td></td>
<td>6.4. Criteria to determine the number of clusters</td>
</tr>
<tr>
<td></td>
<td>7. Miscellanea</td>
</tr>
<tr>
<td></td>
<td>7.1 Subspace clustering</td>
</tr>
<tr>
<td></td>
<td>7.2 Ensemble/Consensus clustering</td>
</tr>
<tr>
<td></td>
<td>7.3 Semisupervised clustering</td>
</tr>
<tr>
<td></td>
<td>7.4 Clustering with obstacles</td>
</tr>
<tr>
<td></td>
<td>7.5 Biclustering, Co-clustering, Two-mode clustering</td>
</tr>
<tr>
<td></td>
<td>7.6 Turning a supervised classification algorithm into a clustering algorithm</td>
</tr>
<tr>
<td></td>
<td>8. Conclusions and final advise</td>
</tr>
</tbody>
</table>

Bibliography

Prerequisites
Basic knowledge of programming is desirable, but not essential, to follow the course. Students must bring their own laptop with R installed (http://www.r-project.org/). Ideally, on the last day of the course the student should work on his/her own dataset; if this were not possible, there will be several standard data sets to choose from.

Readings before the course
The student will benefit more from the course if before attending she reads (these are not compulsory, only advisable):