Statistical Inference

Program

1. **Introduction**
 - 1.1. The general problem of Statistical inference
 - 1.2. Deduction vs induction
 - 1.3. Statistics and Probability
 - 1.4. Estimation
 - 1.5. Hypothesis Testing
 - 1.6. Examples

2. **Some basic statistical test**
 - 2.1. Cross tabulation
 - 2.2. Chi Square test
 - 2.3. Nominal data cross tabulation tests
 - 2.4. Ordinal data cross tabulation tests
 - 2.5. Nominal by scale test
 - 2.6. Concordance measures
 - 2.7. T test for comparing means: paired and independent samples
 - 2.8. Non-parametric versions
 - 2.9. One Way ANOVA, Non parametric version
 - 2.10. Comparing variances of two samples, the F distribution
 - 2.11. Correlations and partial correlations
 - 2.12. Regression and non-linear regression
 - 2.13. Kolmogorov-Smirnov test
 - 2.14. Run Test
 - 2.15. Randomized tests

3. **Multiple testing**
 - 3.1. The family-wise error rate (FWER). Examples
 - 3.2. The Bonferroni and Holm's step-wise corrections
 - 3.3. The False Discovery Rate
 - 3.3.1 Benjamini-Hochberg estimate of FDR
 - 3.3.2 Plug-in estimate of FDR

4. **Introduction to bootstrap methods**
 - 4.1. Parametric bootstrapping
 - 4.2. Nonparametric bootstrapping
 - 4.3. Confidence intervals using bootstrapping
 - 4.4. Permutation tests
 - 4.5. Jacknife and cross-validation

5. **Introduction to Robust Statistics**
 - 4.1. Outliers
 - 4.2. M-estimates of location and scale
 - 4.3. Robust confidence intervals and tests
 - 4.4. Robust regression

Practical demonstration: R and R-Commander (it is not necessary any previous knowledge of the software)

Bibliography

<table>
<thead>
<tr>
<th>Prerequisites</th>
<th>The student is assumed to be familiar with the basics of probability, random variables and probability distributions (binomial, Poisson, normal, t-Student, Chis square and F), concepts of random sampling and estimators.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Readings before coming</td>
<td>The student will benefit more from the course if he reads before attending (the readings are not compulsory only advisable):</td>
</tr>
<tr>
<td></td>
<td>• Introduction to probability (1, 2)</td>
</tr>
<tr>
<td></td>
<td>• Introduction to estimation</td>
</tr>
</tbody>
</table>