<table>
<thead>
<tr>
<th>Course 5</th>
<th>Neural Networks and Deep Learning</th>
</tr>
</thead>
</table>
| **Program** | 1. Introduction
| | 1.1. Target problems
| | 1.2. Rosenblatt's Perceptrons
| | 1.3. Advantages and disadvantages of Perceptrons
| | 1.4. Multilayer perceptron
| | 1.5. Feed-forward and RBF Networks
| | 2. Training algorithms
| | 2.1. Backpropagation algorithm
| | 2.2. Logistic regression and perceptrons
| | 2.3. MAP and ML training
| | 3. Learning and Optimization
| | 3.1. Training as Error Minimization
| | 3.2. Gradient Descent
| | 3.3. Higher Order Descent
| | 3.3.1. Newton's Method
| | 3.3.2. Gauss-Newton Method
| | 3.3.3. Levenberg-Marquardt Method
| | 3.3.4. Quasi-Newton Method
| | 3.4. Generalization and optimization
| | 3.5. Online Learning
| | 4. MLPs in practice
| | 4.1. Data preprocessing
| | 4.2. Network initialization
| | 4.3. Tuning network structure
| | 4.4. Weight decay
| | 4.5. Fast training: Extreme Learning Machines
| | 4.6 Practical data modelling with neural networks
| | 5. Deep Networks
| | 5.1. The problem of learning several hidden layers.
| | 5.2. Whole-network training
| | 5.2.1. Deep networks initialization
| | 5.2.2. Parallel training
| | 5.2.3. Advanced optimization methods
| | 5.3. Incremental training
| | 5.3.1. Autoencoders
| | 5.3.2. Restricted Boltzmann Machines (RBM)
| | R. Duda et al. *Pattern classification*.
| | C. Bishop, *Neural networks for pattern recognition*. |
T. Hastie et al., *The elements of statistical learning*

G. Hinton, *Practical Guide to Training Restricted Boltzmann Machines*